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E F F E C T  OF  T H E  A N I S O T R O P Y  OF  M A C R O M O L E C U L A R  

T A N G L E S  ON T H E  N O N L I N E A R  P R O P E R T I E S  O F  P O L Y M E R  

LIQUIDS S T R E T C H E D  A L O N G  A S I N G L E  AXIS 
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The most serious difficulty in mathematically treating the flow of solutions and melts of linear polymers is the inclusion 
of nonlinear effects. One often has to resort to theories which only qualitatively describe the behavior of the system. The 
insufficiently studied structure of experimentally measured quantities is a possible reason for this difficulty. In this context, 
we consider the example of steady-state viscosity of a stretched fluid. 

1. Steady Flow of a Fluid Stretched along a Single Axis. In the case of steady flow the rheotogical equation of state 
of a liquid polymer can be written in the form of a relation between the velocity gradient tensor vij and the deviator of the 

additional stress tensor rki [1, 2]: 

v~ = ~,,~(~,). 

Using the Hamilton-Cayley theorem, this expression can be written as 

(I.I) 

Here k = k(J 2, J3) and c~ = ~(J2, J3) are scalar functions of the invariants J2 and J3 of the tensor rig and are called the slip 
and flow anisotropy coefficients, respectively [2]; (sik) d denotes the operation of taking the deviator of the tensor sik. 

For steady stretching in a single direction all tensors are diagonal: 

i 0  0 [v~l = - ( I / 2 ) ~  0 
0 - ( i / 2 ) ~  

[(2/3)cr 0 o] 
, {rul = - ( 1 / 3 ) o  ~ (1.2) 

[ 00 0 - ( 1 / 3 )  

(k is the rate of stretching and o is the tension) and a and k are functions of the single argument a. 
In this case, defining the steady-state shear velocity r /of  the stretched fluid by the expression 

we find from (1.1) [2] 

rt~ - r , ,  = o = , / ( o ) k ,  

3 1 (1.3) 
r / (a )  = ztcr t - ( ! / z ) a C , r ) o "  

We note that the dependence of the steady-state shear viscosity ~ of a stretched fluid on the tension a is determined 
by the behavior of the two independent scalar functions k(a) and a(a). While the behavior of ~(a) has often been studied 
experimentally, the author is aware of only one paper [2] discussing k(a) and c~(a), where it is stated that 
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X(o) > O, c~(a) > 0 for small o, c~(a) < 0 for large tr. (1.4) 

Because of the lack of data on the behavior of ),(a) and c~((r), we attempt to determine a theoretical relationship between these 

parameters and the microscopic parameters of the polymer system. We use the rheological equation of state derived from a 

microstructural representation of the dynamics of linear polymer chains. 
2. Nonlinear Theory  of M.icroviscoelasticity of Solutions and Melts of Linear Polymers.  The most successful theory 

of the viscoelasticity of concentrated polymer systems is presently the single-molecule approximation in which the macroscopic 
quantities are calculated by considering the dynamics of a single chain moving in an effective medium made up of the solvent 

and the other macromolecules. A detailed review of the literature in this field has been given in [3]. In this approximation to 
study comparatively slow motions one often uses the Karagin-Slonimski i -Rauz  model (or the ball and spring model) in which 

the dynamical equations of the single macromolecule are written in terms of normal coordinates in the form [3-7] 

d 
m d--~Vr'~ = ~ + ~ - 2T/z2o~ + ~ ,  

D ~ (2.1) 
3-1IT + IT, = - - 

- o ,  " Ot jl pj ). 

Here ,oi~ and ~bi c~ are the generalized coordinate and velocity, m is the mass of the ball, ~" is the coefficient of  friction of the 
ball, ~i  ~ is the random force, I~i ~ is the hydrodynamic force, Ti c~ is the force due to internal viscosity, 2T/zXc, is the elastic 

coefficient, ~" is the relaxation time of the surroundings, Bij ~ and Eij '~ are the tensor coefficients of  friction, oJij is the 
antisymmetrized velocity gradient tensor, D/Dt is the Jaurnan tensor derivative, ~ = 1, 2 . . . . .  N is the number of  the mode 
of motion of the macromolecule, where N is large for long macromolecules. Then the following expression for the stress tensor 

ffik of the system follows from statistical mechanics [4]: 

a~ = - n T 6 a  + a n t  2 [ : ~ -  (1 /3 )6a  - ( 1 / 2 ) ( u ~ +  u~.) l, (2.2) 
~t 

where xik c~ = 2/zX,, (pi~Pk(~)/3, Uik c~ = (PiWI'kC*)/(3T) and the averages are calculated over all possible values of  the random 
phase ,I,i (~, whose statistical properties are determined by the appropriate fluctuation-dissipation relation. 

Following [5], if we assume that the anisotropy of the surroundings of the single chain is determined by the shape and 

orientation of the macromolecular tangles and is characterized by the tensor 

_ L a . .  
a # =  (sa) 3 '~ (2.3) 

I (( % ) = < p;'p7 ) ), 
r 

then we can write 

1~# = B(r + 3fla# + a u - taut)o)-1 ,  (2.4)  

~## = E(r + 3ea~ + va  u - eauc}#) -l.  

These expressions generalize the series expansions of Bij c~ and Eij c' in powers of the applied anisotropy tensor aij given in [4] 
to the case of  large velocity gradients and, as shown in [5], correspond to the condition of  self-consistency. Multiplying the 

dynamical equations (2.1) of  the macromo!ecule successively by pi ~t and Tie and using (2.3) and (2.4), we obtain the relaxation 
equations for the correlation functions xik (~ and uik c( in the form [5, 6] 

624 



D I I B~ 
Dt ik 2 r  b//u~k r eoy~u,, 

(2.5) 

where 

B: )) - '  
a t  ~ 

b~ = 5,~ -'/'--(fl~ + v/e~ ; 

c~, -- (5~ - fl~)h'~; e~ = b~(f,k -- flik); 

= t,~(o~ - %); 4 = :~(,s - 5A; 

X 6j,+3fl 5,; ~ - I au6j, , 

and 3"jk is the symmetrized velocity gradient tensor. 
The system of equations (2.5) involves the relaxation times 

r ,  ~ = lr*la 2, ~ = X + B+'(1 + *l,)/ct 2, 

and therefore the solution of this system is determined by one dimensional parameter Br* and six dimensionless parameters 

V/ = E / B ,  Z = r/(2B'r*), fl, e, K, v. 

Steady flows for simple shear and stretching along a single axis were calculated in [5] using the system of theological 

equations (2.2) and (2.5) with X = f~ and v = e. 
These results do not contradict the known experimental data, but the resulting system of equations is quite complicated 

and therefore a simpler model was suggested in [6] which uses the smallness of the parameters X and r This model was used 

in [7] to study unsteady effects in a liquid under simple shear. 
3. Nonlinear Effects Resulting f rom Anisotropy of the Maeromolecules.  To calculate the slip k and anisotropy (~ 

coefficients introduced in Sec. 1, we consider (2.2) and (2.5) in the case of steady stretching along a single axis, when the 

velocity gradient tensor has the form (1.2). In this c a s e  Uik t~ = 0 and all matrices appearing in (2.5) are diagonal. Then (2.2) 

and (2.5) take the form [5]: 

, 
v u = tr a -  ~ t r  u,Cr i -  n T =  3 n T ~  x ~ -  , 

1 2 
-- ? = ~ s : j . ( l  + a#a.)-' 

+ 2 / ~ . ( , - ' ~ ) ( l + 3 f l a u )  -t. 

(3.1) 

Here there is no summation over i and 3'11 = e; 3"22 = 3'33 = -1 /3k .  It is evident that the solution of (3.1) is determined by 
the single dimensionless parameter fl introduced in (2.4) and used to take into account the shape and orientation of the 

macromolecular tangles in the dynamical equations (2.5) of the macromolecule. To first order in the velocity gradients we 

obtain from (3.1) 

625 



1 2 m ~  
~-~=~ :,,, 

r,, = ~ - n T m T ~ v ,  = 1 ,2 ,3 ,  

(3.2) 

since aii = 0 f o r  zero velocity gradients. Using (1.3), wethen  have 

3 
20 = 2 ( 0 )  - ~t,2nTB.r.. (3.3) 

We solve (3.1) to second order in the velocity gradients Vii and to first order in the anisotropy parameter ft. It follows from 

(2.3) and (3.2) that 

2n2 (3.4) 

and therefore we find from (3.1) 

1 2 
- ~ = 7 B:y~(I + ~a~,)-' + 

+ - - ~ -  , 

- (~r) ),, ~ nT = "~ nTBr*7." + ~ nT _ fl �9 2 2 

(3.5) 

or  

2~ 2 

~, = ~to(~... - nT") - ~ (l - ~)m'~.,. t = l ,  2,  3. 

Taking into account the diagonal form of the tensors ~/ik, trik, rik for stretching along a single axis, the last expression reduces 

to the form 

ZTt 2 
~,,. = ,I:,~ - ~ (l - ~)~'(r,~'.3. 

Using the method of successive approximations to second order in rik, we obtain from the preceding equation the function "Yik 

= 3,ik(rik) in the form (1.1), which gives 

,~(o) = a ' ( l  - a#),  
2~ (3.6) 

~- = ~ ' .  

The next terms in the expansions of c~ and X in powers of the tension tr are obtained in the same way: 

Zo = 1 -  575 / 3 -  l lfl ~ +  7 ~  + 97fl ~ ;  

3 : ' -  �9 

(3.7) 

(3.8)  

Here ~ = cr/(nT); X 0 and a* are determined by (3.3) and (3.6). 
Equations (3.7) and (3.8) are graphed in Figs. 1 and 2 (curves 1-5 correspond to the values/3 = 0, 0.05, 0.1, 0.25, 

0.3). We see from Fig. 1 that the slip coefficient XO) is an increasing function of both the tension ~ (when B ;~ 0) and the 

anisotropy parameter fl, and large fl corresponds to large h(~) .  We see from Fig. 2 that the flow anisotropy coefficient ~(~) 

becomes independent of  the tension at small 5 and is determined by (3.6). With increasing ~, the coefficient c~(~) at first 

decreases and becomes negative, then increases. These results do not contradict the experimental data of  [2] and the statement 
(1.4). 
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In summary with the help of the microstructural approach we have found a relationship between the nonlinear 

characteristics of solutions and melts of linear polymers stretched along a single axis and the anisotropy parameter 
characterizing the effect of the shape and orientation of the macromolecular tangles in the flow on the dynamics of the single 
macromolecule. More detailed experimental data for the slip X and anisotropy c~ coefficients could be used with our results 

to determine the anisotropy parameter B, which is a fundamental parameter of the nonlinear theory of microviscoelasticity [4-7]. 
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